Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status of 3 MeV beam scrapers for the J-PARC LINAC

Hirano, Koichiro; Sugimura, Takashi*; Kurihara, Toshikazu*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.324 - 328, 2018/08

We could use a 3 MeV beam scraper without a problem for five months when the scraper received to 1.3 times as high as a normal average beam current of the scraper in 1MW beam operation. The peak temperature on the scraper surface was 1800$$^{circ}$$C. Irradiation damage caused by the 3 MeV beam with particle number of 3E22 was 700 $$mu$$m depth. We study scraper materials which can withstand the current density higher than carbon composite used in the scraper because almost all beams can be irradiated to the scraper in 1 MW beam operation. Beam irradiation tests have been performed about graphene and tungsten as scraper materials with high heat conductivity. This paper describes beam irradiation test of the 3 MeV beam scraper and scraper materials.

Journal Articles

Negative hydrogen ion beam irradiation experiments of beam scrapers using the J-PARC 3 MeV-Linac

Hirano, Koichiro; Ishiyama, Tatsuya; Kurihara, Toshikazu*; Sugimura, Takashi*; Maruta, Tomofumi*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.847 - 852, 2017/12

Beam scrapers made of carbon composite have been used in the MEBT1 between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC Linac. We have conducted the scraper irradiation test with the 3 MeV linac. The test piece of the scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.2E20. We measured the surface temperature of more than 3000$$^{circ}$$C using a high-speed radiation thermometer and observed the irradiation damage on the scraper by using the laser microscope. When the surface temperature exceeded 2900$$^{circ}$$C, the ionic current of carbon and the irradiation damage on the surface of the test piece rapidly increased. This paper describes beam irradiation test results of the scraper.

Journal Articles

Development of beam scrapers using a 3-Mev linac at J-PARC

Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11

We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65$$^{circ}$$ scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.

Journal Articles

Development of a vertical collimator at the mebt1 of J-PARC linac

Sugimura, Takashi*; Maruta, Tomofumi*; Hirano, Koichiro

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.307 - 309, 2016/11

There is an upgrade plan of J-PARC (Japan Proton Accelerator Research Complex) Linac from currently operated beam parameters such as, beam current of 40 mA, beam pulse width of 0.5msec and repetition of 25 Hz, to 50 mA, 0.5msec and 50 Hz, respectively. To reduce beam loss during a beam acceleration is a must task to accelerate a high power beam. At J-PARC Linac, a beam from an ion source followed by RFQ (Radio Frequency Quadrupole) injected into a series of DTLs (Drift Tube Linac) through a MEBT1 (Medium Energy Beam Transport 1), where a beam matching and a beam pulse forming are carried out at the beam energy of 3 MeV. There are some locally activated spots in DTL area at the current beam power level so that some kind of mitigation measure is required. Beam simulation results show that the beam loss at the DTL area can be reduced if there is a pair of vertical beam collimators. This paper reports a design and fabrication status of new vertical collimators.

Journal Articles

Development of RF chopper system at J-PARC Linac, 2

Hirano, Koichiro; Kondo, Yasuhiro; Kawane, Yusuke; Shinozaki, Shinichi; Miura, Akihiko; Morishita, Takatoshi; Sawabe, Yuki; Sugimura, Takashi*; Naito, Fujio*; Fang, Z.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.944 - 947, 2015/09

Two RF-deflecting cavities as a chopper and a beam scraper have been used in the MEBT1 between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC Linac. We replaced with a newly fabricated RF chopper to decrease beam loss for the operation with 50 mA. We installed two new scrapers to absorb the higher power of the deflected beam by the RF chopper. This paper describes the RF chopper system and beam irradiation test results of the scraper.

Journal Articles

The Heat transfer analysis for a new large entry angled scraper for J-PARC Linac

Sugimura, Takashi*; Hirano, Koichiro

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.954 - 957, 2015/09

The beam power of 1MW is a design specification of J-PARC. Therefore the beam current upgrade to 50 mA in the injector linac is indispensable. The scrapers installed in the linac have been took waste beam out of RFQ since last summer. They consist of Carbon composite surface plates and Copper block with cooling-water channel. The deterioration of thermal conducting has been observed during daily operation. Thus, a newly designed scraper with a large entry angle of 67 $$^{circ}$$ is introduced as countermeasures. This paper reports the results of numeric simulations of the new scrapers and their installation schedule.

6 (Records 1-6 displayed on this page)
  • 1